close

News WrapGet Handpicked Stories from our editors directly to your mailbox

China eyes energy revolution with development of next generation 'artificial sun'

Chinese scientists, who dreamed to "build a sun" as far back as 1985, when a group of 35 industrial nations and blocs including China, the European Union, India, Japan, and Russia agreed on building the world's first fusion device.

Various of Experimental Advanced Superconducting Tokamak, scientists working in lab

Chinese scientists are on the verge of a major new dawn in the construction of a next-generation 'artificial sun', as they bid to make a breakthrough in the development China's largest Tokamak, a device which can produce controlled thermonuclear fusion power.

(Photograph:Reuters)

Superconducting materials

There was no way a superconducting device could be built without the all-important superconducting material.

So Chinese scientists were left with no choice but to turn this disappointment into a driving force to up their game and develop their own superconducting material technology.

(Photograph:Reuters)

Nuclear fusion process of the real sun

As one of the major components of ITER, China officially started to build the Experimental Advanced Superconducting Tokamak (EAST), dubbed the 'artificial sun', a controllable fusion reactor apparatus designed to generate energy by mimicking the nuclear fusion process of the real sun, in 1999.

(Photograph:Reuters)

Chinese scientists at work

Chinese scientists overcame a series of technical difficulties and developed high-quality superconducting materials that could not only satisfy China's own needs, but also fulfill high export demands.

"Without our previous difficulties, and the painful research and development process, there's no way we can achieve what you see today. We must grasp techniques in our own hands firmly, and it's not feasible to ask or beg others for them," Yuntao, deputy director, Chinese Academy of Sciences, said.

 

(Photograph:Reuters)

Huge energy revolutiory

Designed to be the first fusion device to test the integrated technologies, materials and physics regimes necessary for the commercial production of fusion-based electricity, ITER is expected to bring a huge energy revolution once realized.

"If we succeed, one liter of seawater after nuclear fusion can produce energy equal to 300 liters of gasoline. If we can build a fusion power plant in the future successfully, we will be able to provide unlimited energy to the people,"  Yuntao said.

 

(Photograph:Reuters)

China's obstacles

 As the Experimental Advanced Superconducting Tokamak project started, scientists encountered some real troubles.

Song Yuntao, deputy director, Institute of Plasma Physics, Chinese Academy of Sciences, said:  "We've tackled a series of key technological issues to grasp core technology related to the construction of the fusion reactor in the future. For example, superconducting technology, superconducting joints, superconducting wiring, large power supply, divertor system and the large magnet system."

"We are currently producing the world's largest superconducting magnet for the European Union, while most superconducting materials in the world are from China," Yuntao added. 

(Photograph:Reuters)

Chain of nuclear fusion

In addition to superconducting materials, other key links on the industry chain of nuclear fusion have also made great leaps forward.

"At the early stage of the project, the United States agreed to provide superconducting materials for us. But then they refused to give that to us, how could we build the experimental advanced superconducting Tokamak without the superconducting material? We were all dumbfounded,"  Yuntao added.

(Photograph:Reuters)