After 13 years around Saturn, Cassini to take final plunge today

Cassini launched from Florida in 1997, then spent seven years getting to Saturn. From the 13 years the spacecraft spent orbiting the ringed planet, here is some of its best work

Saturn's moon Titan from NASA's Cassini spacecraft (Source: NASA/JPL-Caltech)

This composite image shows an infrared view of Saturn's moon Titan from NASA's Cassini spacecraft, acquired during the mission's ''T-114'' flyby on Nov. 13, 2015. The spacecraft's visual and infrared mapping spectrometer (VIMS) instrument made these observations, in which blue represents wavelengths centered at 1.3 microns, green represents 2.0 microns, and red represents 5.0 microns. A view at visible wavelengths (centered around 0.5 microns) would show only Titan's hazy atmosphere (as in Titan Up Front). The near-infrared wavelengths in this image allow Cassini's vision to penetrate the haze and reveal the moon's surface.

During this Titan flyby, the spacecraft's closest-approach altitude was 6,200 miles (10,000 kilometers), which is considerably higher than those of typical flybys, which are around 750 miles (1,200 kilometers). The high flyby allowed VIMS to gather moderate-resolution views over wide areas (typically at a few kilometers per pixel).
(Others)

Saturn's rings from NASA's Cassini spacecraft (Source: NASA/JPL-Caltech)

This view looks toward the sunlit side of the rings from about 4 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 28, 2016.

The view was acquired at a distance of approximately 740,000 miles (1.2 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 76 degrees. Image scale is 4 miles (7 kilometers) per pixel.

The 2,980-mile-wide (4,800-kilometer-wide) division in Saturn's rings is thought to be caused by the moon Mimas. Particles within the division orbit Saturn almost exactly twice for every time that Mimas orbits, leading to a build-up of gravitational nudges from the moon. These repeated gravitational interactions sculpt the outer edge of the B ring and keep its particles from drifting into the Cassini Division. (Others)

Saturn's icy moon Enceladus from NASA's Cassini spacecraft (Source: NASA/JPL-Caltech)

NASA's Cassini spacecraft zoomed by Saturn's icy moon Enceladus on Oct. 14, 2015, capturing this stunning image of the moon's north pole. A companion view from the wide-angle camera (PIA20010) shows a zoomed out view of the same region for context.

Scientists expected the north polar region of Enceladus to be heavily cratered, based on low-resolution images from the Voyager mission, but high-resolution Cassini images show a landscape of stark contrasts. Thin cracks cross over the pole -- the northernmost extent of a global system of such fractures. Before this Cassini flyby, scientists did not know if the fractures extended so far north on Enceladus. (Others)

Three of Saturn's moons from NASA's Cassini spacecraft (Source: NASA/JPL-Caltech)

The Cassini spacecraft captures a rare family photo of three of Saturn's moons that couldn't be more different from each other! As the largest of the three, Tethys (image center) is round and has a variety of terrains across its surface. Meanwhile, Hyperion (to the upper-left of Tethys) is the "wild one" with a chaotic spin and Prometheus (lower-left) is a tiny moon that busies itself sculpting the F ring.

This view looks toward the sunlit side of the rings from about 1 degree above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 14, 2014.

The view was acquired at a distance of approximately 1.2 million miles (1.9 million kilometers) from Tethys and at a Sun-Tethys-spacecraft, or phase, angle of 22 degrees. Image scale is 7 miles (11 kilometers) per pixel. (Others)

The marvelous panoramic view from NASA's Cassini spacecraft (Source: NASA/JPL-Caltec

With giant Saturn hanging in the blackness and sheltering Cassini from the sun's blinding glare, the spacecraft viewed the rings as never before, revealing previously unknown faint rings and even glimpsing its home world.

This marvelous panoramic view was created by combining a total of 165 images taken by the Cassini wide-angle camera over nearly three hours on Sept. 15, 2006. The full mosaic consists of three rows of nine wide-angle camera footprints; only a portion of the full mosaic is shown here. Color in the view was created by digitally compositing ultraviolet, infrared and clear filter images and was then adjusted to resemble natural color. (Others)

The spinning vortex from NASA's Cassini spacecraft (Source: NASA/JPL-Caltech)

The spinning vortex of Saturn's north polar storm resembles a deep red rose of giant proportions surrounded by green foliage in this false-color image from NASA's Cassini spacecraft. Measurements have sized the eye at a staggering 1,250 miles (2,000 kilometers) across with cloud speeds as fast as 330 miles per hour (150 meters per second).

The images were taken with the Cassini spacecraft narrow-angle camera on Nov. 27, 2012, using a combination of spectral filters sensitive to wavelengths of near-infrared light. The images filtered at 890 nanometers are projected as blue. The images filtered at 728 nanometers are projected as green, and images filtered at 752 nanometers are projected as red. In this scheme, red indicates low clouds and green indicates high ones.

The view was acquired at a distance of approximately 261,000 miles (419,000 kilometers) from Saturn and at a sun-Saturn-spacecraft, or phase, angle of 94 degrees. Image scale is 1 mile (2 kilometers) per pixel. (Others)

A quartet of Saturn's moons from NASA's Cassini spacecraft (Source: NASA/JPL-Caltech)

A quartet of Saturn's moons are shown with a sliver of the rings in this Cassini spacecraft view.

From left to right in this image are Epimetheus (113 kilometers, or 70 miles across), Janus (179 kilometers, or 111 miles across), Prometheus (86 kilometers, or 53 miles across) and Atlas (30 kilometers, or 19 miles across).

This view looks toward the northern, sunlit side of the rings from just above the ring plane. (Others)

The dwarf Tethys from NASA's Cassini spacecraft (Source: NASA/JPL-Caltech)

Tethys may not be tiny by normal standards, but when it is captured alongside Saturn, it can't help but seem pretty small.

Even Saturn's rings appear to dwarf Tethys (660 miles, or 1,062 kilometers across), which is in the upper left of the image, although scientists believe the moon to be many times more massive than the entire ring system combined.

This view looks toward the unilluminated side of the rings from about 18 degrees below the ringplane. The image was taken in green light with the Cassini spacecraft wide-angle camera on Aug. 19, 2012.

The view was acquired at a distance of approximately 1.5 million miles (2.4 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 63 degrees. Image scale is 86 miles (138 kilometers) per pixel. (Others)

The graceful giant from NASA's Cassini spacecraft (Source: NASA/JPL-Caltech)

This natural color mosaic was acquired by the Cassini spacecraft as it soared 39 degrees above the unilluminated side of the rings.

Little light makes its way through the rings to be scattered in Cassini's direction in this viewing geometry, making the rings appear somewhat dark compared to the reflective planet. The view can be contrasted with earlier mosaics designed to showcase the rings rather than the planet, which were therefore given longer exposure times.

Bright clouds play in the blue-gray skies of the north. The ring shadows continue to caress the planet as they slide farther south toward their momentary disappearance during equinox in 2009. The rings' reflected light illuminates the southern hemisphere on Saturn's night side. (Others)

The huge storm from NASA's Cassini spacecraft (Source: NASA/JPL-Caltech)

The huge storm churning through the atmosphere in Saturn's northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft.

This storm is the largest, most intense storm observed on Saturn by NASA’s Voyager or Cassini spacecraft. It is still active today. As scientists have tracked this storm over several months, they have found it covers 500 times the area of the largest of the southern hemisphere storms observed earlier in the Cassini mission. The shadow cast by Saturn's rings has a strong seasonal effect, and it is possible that the switch to powerful storms now being located in the northern hemisphere is related to the change of seasons after the planet's August 2009 equinox. (Others)